Reactor Core Design and Analysis for a Micronuclear Power Source
نویسندگان
چکیده
Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.
منابع مشابه
Core Loading Design for Bushehr Pressurized Water Reactor
The modified out-in fuel management strategy was applied to the core loading design for the first four cycles of the Bushehr (Iran-1) KWU designed Pressurized Water Reactor (PWR). The minimum peak-to-average power density was chosen as the objective function of the optimization process. Lattice homogenization and group constants generation were performed by using the LEOPARD computer code. For ...
متن کاملThermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very f...
متن کاملDesign and Implementation of a Reactor Physics Laboratory Simulation Software
The basic structure of a reactor physics laboratory environment simulation software, developed using object modeling technique (OMT), and based on the reactor point kinetic equation, is presented. Also, various capabilities of the simulator in teaching the fundamental concepts of reactor physics are discussed. In this virtual laboratory, student can perform seven different experiments, ...
متن کاملDesign and Implementation of a Reactor Physics Laboratory Simulation Software
The basic structure of a reactor physics laboratory environment simulation software, developed using object modeling technique (OMT), and based on the reactor point kinetic equation, is presented. Also, various capabilities of the simulator in teaching the fundamental concepts of reactor physics are discussed. 
 In this virtual laboratory, student can perform seven different experiments...
متن کاملComputing Atomic Density Changes of Material Composition in Operation of the Nuclear Reactor Core
The present work investigates an appropriate way to calculate the 1700 atomic density changes in the reactor operations. To automate this procedure, a computer program has been designed by C#. This program suggests a way to solve this problem which is based on the solution system of differential equations (Bitman) that it is designed according to Runge-Kutta Fehlberg method. The designed softwa...
متن کامل